Initial commit
This commit is contained in:
22
Fermat’s Little Theorem.md
Normal file
22
Fermat’s Little Theorem.md
Normal file
@@ -0,0 +1,22 @@
|
||||
#Math #NT
|
||||
|
||||
# Fermet’s Little Theorem
|
||||
|
||||
If $p$ is a prime integer:
|
||||
|
||||
$$
|
||||
a^{p - 1} \equiv 1 \mod p \\
|
||||
a^p \equiv a \mod p
|
||||
$$
|
||||
$$
|
||||
a^{p - 1} \equiv 1 \mod p \\
|
||||
a^p \equiv a \mod p
|
||||
$$
|
||||
|
||||
# Proof
|
||||
|
||||
Let $p$ be a prime integer. Say a necklace has $p$ beads and $a$ possible colors per bread. Except for a necklace with only one color, each combination of necklace colors has $p$ permutations. Therefore:
|
||||
|
||||
$$
|
||||
a^p \equiv a \mod p
|
||||
$$
|
||||
Reference in New Issue
Block a user