Initial commit
This commit is contained in:
27
Hockey Stick Identity.md
Normal file
27
Hockey Stick Identity.md
Normal file
@@ -0,0 +1,27 @@
|
||||
#Math #Probability
|
||||
|
||||
# Statement
|
||||
|
||||
For $n \geq r$, $n, r \in \mathbb{N}$:
|
||||
|
||||
$$
|
||||
\sum _{i = r}^n {i \choose r} = {n + 1 \choose r + 1}
|
||||
$$
|
||||
|
||||
# Proof
|
||||
|
||||
Let us have a base case $n = r$:
|
||||
|
||||
$$
|
||||
{r \choose r} = {r + 1 \choose r + 1} = 1
|
||||
$$
|
||||
|
||||
Now suppose $\sum _{i = r}^n {i \choose r} = {n + 1 \choose r + 1}$ for a certain $n$:
|
||||
|
||||
$$
|
||||
\sum _{i = r}^n {i \choose r} + {n + 1 \choose r} \\
|
||||
= {n + 1 \choose r + 1} + {n + 1 \choose r} \\
|
||||
= {n + 2 \choose r + 1}
|
||||
$$
|
||||
|
||||
Since $n = r$ is true, and if a case is true for $n$, it is true for $n + 1$, this statement is true for all $n \geq r$.
|
||||
Reference in New Issue
Block a user