Initial commit
This commit is contained in:
46
Hyperbolic Trig.md
Normal file
46
Hyperbolic Trig.md
Normal file
@@ -0,0 +1,46 @@
|
||||
#Math #Trig
|
||||
|
||||
# Definition
|
||||
|
||||
## Definition in terms of $e$
|
||||
|
||||
We define $\cosh$ and $\sinh$ to be the even and odd parts of $e^x$ respectively:
|
||||
|
||||
$$
|
||||
\cosh x = \frac {e^x + e^{-x}} 2 \\
|
||||
\sinh x = \frac {e^x - e^{-x}} 2
|
||||
$$
|
||||
|
||||
Note this gives us:
|
||||
|
||||
$$
|
||||
\sinh x + \cosh x = e^x
|
||||
$$
|
||||
|
||||
similar to Euler's Formula for circular trig functions.
|
||||
|
||||
## Definition in terms of a hyperbola
|
||||
|
||||
[https://www.desmos.com/calculator/ixmjpfmukk](https://www.desmos.com/calculator/ixmjpfmukk)
|
||||
|
||||
Know that the geometric definition of $\cosh$ is that $B = \cosh 2b$, where $b$ is the blue area. To find $b$, we can use:
|
||||
|
||||
$$
|
||||
b = \frac {B\sqrt{B^2 - 1}} 2 -\int _1^B \sqrt {x^2 - 1} dx \\
|
||||
= \frac {B\sqrt{B^2 - 1}} 2 - \frac {B\sqrt {B^2 - 1} - \ln(B + \sqrt {B^2 - 1})} 2\\
|
||||
= \frac {\ln(B + \sqrt {B^2 - 1})} 2
|
||||
$$
|
||||
|
||||
Now let $a = 2b = -\ln(B + \sqrt {B^2 - 1})$. Now we can solve for $B$ in terms of $a$ to define $\cosh$:
|
||||
|
||||
$$
|
||||
a = \ln(B + \sqrt {B^2 - 1}) \\
|
||||
B = \frac {e^a + e^{-a}} 2 \\
|
||||
\cosh x = \frac {e^x + e^{-x}} 2
|
||||
$$
|
||||
|
||||
Now using the fact $\cosh$ and $\sinh$ lie on a hyperbola (can be proved algebraically) we get:
|
||||
|
||||
$$
|
||||
\sinh x = \frac {e^x - e^{-x}} 2
|
||||
$$
|
||||
Reference in New Issue
Block a user