Initial commit
This commit is contained in:
22
Laplace Transforms.md
Normal file
22
Laplace Transforms.md
Normal file
@@ -0,0 +1,22 @@
|
||||
#Calculus #Math
|
||||
# Background - Analytic Continuation
|
||||
$$
|
||||
\int _0^\infty e^{-st} dt = \frac 1 {s}
|
||||
$$
|
||||
is used as an analytic continuation of the function. For the Laplace Transform to work, most of the integrals used must be extended to analytic continuations.
|
||||
# Definition - Laplace Transform
|
||||
$$
|
||||
F(s) = \int _0^\infty f(x) e^{-st} dt
|
||||
$$
|
||||
# Intuition - The $e^{sx}$ Finding Machine
|
||||
Take $f(x)$ as $\sum c_n e^{at}$. Plugging into the Laplace Transform:
|
||||
$$
|
||||
F(s) = \int _0^\infty \sum c_ne^{(a - s)t} dt
|
||||
$$
|
||||
$$
|
||||
= \sum c_n \int _0^\infty e^{-(s - a)t} dt
|
||||
$$
|
||||
$$
|
||||
= \sum \frac {c_n} {s - a}
|
||||
$$
|
||||
Therefore the Laplace Transform of a function reveals both $c_n$ and $s$ in the sum based upon the parts that make up the transform: poles reveal all $s$ values, while the "magnitude" of each pole reveals the magnitude of each $e^{sx}$ term.
|
||||
Reference in New Issue
Block a user