Initial commit
This commit is contained in:
44
Pascal’s Triangle and Binomial Coefficients.md
Normal file
44
Pascal’s Triangle and Binomial Coefficients.md
Normal file
@@ -0,0 +1,44 @@
|
||||
#Math #Probability
|
||||
|
||||
# Observing Pascal’s Triangle
|
||||
|
||||
| n/k | 0 | 1 | 2 | 3 | 4 | 5 |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| 0 | 1 | | | | | |
|
||||
| 1 | 1 | 1 | | | | |
|
||||
| 2 | 1 | 2 | 1 | | | |
|
||||
| 3 | 1 | 3 | 3 | 1 | | |
|
||||
| 4 | 1 | 4 | 6 | 4 | 1 | |
|
||||
| 5 | 1 | 5 | 10 | 10 | 5 | 1 |
|
||||
|
||||
As you can see, Pascal’s Triangle generates:
|
||||
|
||||
$$
|
||||
{n \choose k}
|
||||
$$
|
||||
|
||||
or
|
||||
|
||||
$$
|
||||
\frac{n!}{k!(n-k)!}
|
||||
$$
|
||||
|
||||
But how does this work?
|
||||
|
||||
First, we can manually prove the top two rows of Pascal’s Triangle by plugging the values into the binomial coefficient formula.
|
||||
|
||||
Afterward, we can use the property of Pascal’s Triangle, taking Pascal’s Triangle as a function P:
|
||||
|
||||
$$
|
||||
P(n + 1, k) = P(n, k) + P(n, k-1)
|
||||
$$
|
||||
|
||||
By proving this property in the binomial coefficient formula, we can deduce that Pascal’s Triangle generates binomial coefficients
|
||||
|
||||
# The Proof
|
||||
|
||||
$$
|
||||
\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!}\\=\frac{n!(n-k+1)}{k!(n-k)!(n-k+1)}+\frac{n!k}{(k-1)!(n-k+1)!k}\\=\frac{n!(n-k+1)}{k!(n-k+1)!}+\frac{n!k}{k!(n-k+1)!}\\=\frac{n!(n+k+1-k)}{k!(n-k+1)!}\\=\frac{n!(n+1)}{k!(n-k+1)!}\\=\frac{(n+1)!}{k!(n-k+1)!}
|
||||
$$
|
||||
|
||||
From this, we have proven that we can generate binomial coefficients using Pascal’s Triangle
|
||||
Reference in New Issue
Block a user