Initial commit
This commit is contained in:
97
Poisson Distribution.md
Normal file
97
Poisson Distribution.md
Normal file
@@ -0,0 +1,97 @@
|
||||
#Math #Probability
|
||||
|
||||
# The Poisson Distribution
|
||||
|
||||
The Poisson Distribution describes a distribution where an event occurs for an interval of time, where there is an a mean number of times the event happens in the same interval of time.
|
||||
|
||||
# Binomial Distribution to Poisson Distribution
|
||||
|
||||
Binomial Distribution
|
||||
|
||||
$$
|
||||
\frac {n!} {k!(n-k)!} p^k (1-p)^{n-k}
|
||||
$$
|
||||
|
||||
Binomial Distribution with infinite trials
|
||||
|
||||
$$
|
||||
\lim _{n\to\infty} \frac {n!} {k!(n-k)!} p^k (1-p)^{n-k}
|
||||
$$
|
||||
|
||||
Let a be np, the average success rate in n intervals. This gives us the Poisson Distribution in another form.
|
||||
|
||||
$$
|
||||
\lim _{n\to\infty} \frac {n!} {k!(n-k)!} (\frac {a} {n})^k (1-\frac {a} {n})^{n-k}
|
||||
$$
|
||||
|
||||
$$
|
||||
\lim _{n\to\infty} \frac {n!} {k!(n-k)!} (\frac {a^k} {n^k}) (1-\frac {a} {n})^n(1-\frac {a} {n})^{-k}
|
||||
$$
|
||||
|
||||
$$
|
||||
\frac {a^k} {k!} \lim _{n\to\infty} \frac {n!} {n^a(n-k)!} (1-\frac {a} {n})^n(1-\frac {a} {n})^{-k}
|
||||
$$
|
||||
|
||||
Now we have three limits to evaluate
|
||||
|
||||
# Evaluating the Limits
|
||||
|
||||
## First Limit
|
||||
|
||||
$$
|
||||
\lim _{n \to\infty} \frac {n!} {n^k(n-k)!}
|
||||
$$
|
||||
|
||||
$$
|
||||
\lim _{n \to\infty} \frac {n(n-1)(n-2)...(n-k)(n-k-1)...(1)} {n^k(n-k)(n-k-1)...(1)}
|
||||
$$
|
||||
|
||||
$$
|
||||
\lim _{n\to\infty} \frac {n(n-1)...(n-k+1)} {n^k}
|
||||
$$
|
||||
|
||||
$$
|
||||
\lim _{n\to\infty} (\frac {n} {n})(\frac {n-1} {n})...(\frac {n-k+1} {n})
|
||||
$$
|
||||
|
||||
As n goes to infinity, all the terms tend to 1. Therefore, the limit tends to 1.
|
||||
|
||||
## Second Limit
|
||||
|
||||
$$
|
||||
\lim _{n\to\infty} (1-\frac {a} {n})^n
|
||||
$$
|
||||
|
||||
Let u be -n/x (note this tends to negative infinity)
|
||||
|
||||
$$
|
||||
\lim _{n\to\infty}(1+\frac {1} {u})^{-au}
|
||||
$$
|
||||
|
||||
Use definition of e
|
||||
|
||||
$$
|
||||
e^{-a}
|
||||
$$
|
||||
|
||||
## Third Limit
|
||||
|
||||
$$
|
||||
\lim _{n\to\infty}(1-\frac{a} {n})^{-k}
|
||||
$$
|
||||
|
||||
a/n tends to 0
|
||||
|
||||
$$
|
||||
1^k
|
||||
$$
|
||||
|
||||
Therefore this limit tends to 1.
|
||||
|
||||
# Putting it together
|
||||
|
||||
$$
|
||||
\frac {e^{-a}a^{k}}{k!}
|
||||
$$
|
||||
|
||||
is the formula for the probability of an event happening k times in an interval of time, where a is the mean number of times of the event happening in the interval of time the event ran in. This is the formula for the Poisson Distribution.
|
||||
Reference in New Issue
Block a user