Initial commit
This commit is contained in:
61
Taylor Series Proof.md
Normal file
61
Taylor Series Proof.md
Normal file
@@ -0,0 +1,61 @@
|
||||
#Math #Calculus
|
||||
|
||||
Represent function using power series:
|
||||
|
||||
$$
|
||||
f(x) = \sum _{n=0}^{\infty} c_n (x-a)^n
|
||||
$$
|
||||
|
||||
Find $c_0$
|
||||
|
||||
$$
|
||||
c_0=f(a)
|
||||
$$
|
||||
|
||||
Take derivative of function
|
||||
|
||||
$$
|
||||
\frac d {dx} f(x) = \sum _{n=0}^\infty c_{n+1} (n+1)(x-a)^n
|
||||
$$
|
||||
|
||||
Find $c_1$
|
||||
|
||||
$$
|
||||
c_1=\frac {d} {dx} f(a)
|
||||
$$
|
||||
|
||||
Take second derivative of function
|
||||
|
||||
$$
|
||||
\frac {d^2} {d^2x} f(x) = \sum _{n=0}^\infty c_{n+2} (n+1)(n+2)(x-a)^n
|
||||
$$
|
||||
|
||||
Find $c_2$
|
||||
|
||||
$$
|
||||
c_2=\frac {\frac {d^2} {d^2x} f(a)} {2}
|
||||
$$
|
||||
|
||||
Take third derivative of function
|
||||
|
||||
$$
|
||||
\frac {d^3} {d^3x} f(x) = \sum _{n=0}^\infty c_{n+3} (n+1)(n+2)(n+3)(x-a)^n
|
||||
$$
|
||||
|
||||
Find $c_3$
|
||||
|
||||
$$
|
||||
c_3=\frac {\frac {d^3} {d^3x} f(a)} {6}
|
||||
$$
|
||||
|
||||
Create general formula for $n$th element of $c$
|
||||
|
||||
$$
|
||||
c_n = \frac {\frac {d^n} {d^nx}f(a)} {n!}
|
||||
$$
|
||||
|
||||
Create general formula for function as polynomial
|
||||
|
||||
$$
|
||||
f(x)=\sum _{n=0}^\infty \frac {\frac {d^n} {d^nx}f(a)} {n!} (x-a)^n
|
||||
$$
|
||||
Reference in New Issue
Block a user