Initial commit
This commit is contained in:
81
Totient Function.md
Normal file
81
Totient Function.md
Normal file
@@ -0,0 +1,81 @@
|
||||
#Math #NT
|
||||
|
||||
# Definition
|
||||
|
||||
Euler’s totient function returns the number of integers from $1 \leq k \leq n$ for a positive integer $n$. It is notated as:
|
||||
|
||||
$$
|
||||
\phi(n)
|
||||
$$
|
||||
|
||||
# $\phi(n)$ for Prime Powers
|
||||
|
||||
Through prime factorization, for $p^k$, the only positive integers below $p^k$ where $\gcd(p^k, n) > 1$ is where $n = mp$, for $1 \leq m \leq p^{k - 1}$. Therefore:
|
||||
|
||||
$$
|
||||
\phi(p^k) \\ = p^k - p^{k - 1} \\ = p^{k - 1}(p - 1) \\ p^k(1 - \frac 1 p)
|
||||
$$
|
||||
|
||||
# Multiplicative Property of $\phi$
|
||||
|
||||
If $m$ and $n$ are coprime:
|
||||
|
||||
$$
|
||||
\phi(m)\phi(n) = \phi(mn)
|
||||
$$
|
||||
|
||||
Proof: Let set $A$ be all numbers coprime to $m$ below $m$, and set $B$ be all numbers coprime to $n$ below $n$.
|
||||
|
||||
$$
|
||||
|A| = \phi(m) \\ |B| = \phi(n)
|
||||
$$
|
||||
|
||||
Let set $D$ be all possible ordered pairs using elements from $A$ and $B$, where the element of $A$ is first. If for each element $(k_1, k_2)$in set $D$ we return a value $\theta$ where:
|
||||
|
||||
$$
|
||||
\theta \equiv k_1 \mod m \\ \theta \equiv k_2 \mod n
|
||||
$$
|
||||
|
||||
CRT ensures $\theta$ is unique to $\mod ab$ and exists. Given the fact $\gcd(x + yz, z) = \gcd(x, z)$, we can say that:
|
||||
|
||||
$$
|
||||
\gcd(\theta, m) = \gcd(k_1, m) = 1 \\ \gcd(\theta, n) = \gcd(k_2, n) = 1 \\ \gcd(\theta, mn) = 1
|
||||
$$
|
||||
|
||||
If we put all $\theta$ in set $C$, we can see that set $C$ has all the elements fitting the above conditions. Looking at the length of $C$:
|
||||
|
||||
$$
|
||||
|C| = \phi(mn) \\
|
||||
|C| = |A| * |B| = \phi(m)\phi(n) \\
|
||||
\phi(mn) = \phi(m)\phi(n)
|
||||
$$
|
||||
|
||||
# Value of $\phi$ for any Number
|
||||
|
||||
Let a positive integer $n$ prime factorization be:
|
||||
|
||||
$$
|
||||
n = p_1^{k_1}p_2^{k_2}p_3^{k_3}...p_l^{k_l}
|
||||
$$
|
||||
|
||||
Now using the properties above:
|
||||
|
||||
$$
|
||||
\phi(n) \\
|
||||
= \prod _{i = 1}^l \phi(p_i^{k_i}) \\
|
||||
= \prod _{i = 1}^l p_i^{k_i}(1 - \frac 1 {p_i})
|
||||
$$
|
||||
|
||||
Multiplying all $p_i^{k_i}$ gives $n$, so factor that out:
|
||||
|
||||
$$
|
||||
= n \prod _{i = 1}^l (1 - \frac 1 {p_i})
|
||||
$$
|
||||
|
||||
(you can derive most textbook definitions from this formula easily)
|
||||
|
||||
Final formula:
|
||||
|
||||
$$
|
||||
\phi(n) = n \prod _{i = 1}^l (1 - \frac 1 {p_i})
|
||||
$$
|
||||
Reference in New Issue
Block a user