Initial commit
This commit is contained in:
97
Vectors.md
Normal file
97
Vectors.md
Normal file
@@ -0,0 +1,97 @@
|
||||
#Math #Algebra
|
||||
|
||||
# Defining Vectors
|
||||
|
||||
Vectors are a list of components. They can be expressed in ij notation by:
|
||||
|
||||
$$
|
||||
\mathbf a = 2i + 3j -4k
|
||||
$$
|
||||
|
||||
or
|
||||
|
||||
$$
|
||||
\vec a = 2i + 3j -4k
|
||||
$$
|
||||
|
||||
You can also express a vector as a matrix:
|
||||
|
||||
$$
|
||||
\vec a = \begin {bmatrix}
|
||||
2 \\
|
||||
3 \\
|
||||
-4 \\
|
||||
\end {bmatrix} \\
|
||||
\vec a = \begin {bmatrix} 2 & 3 & -4 \end {bmatrix}
|
||||
$$
|
||||
|
||||
# Adding and Subtracting Vectors
|
||||
|
||||
To add vectors, add their corresponding components. For example:
|
||||
|
||||
$$
|
||||
\vec a = 4i + 7j - 9k \\
|
||||
\vec b = 3i - 5j - 8k \\
|
||||
\vec a + \vec b = 7i + 2j - 17k
|
||||
$$
|
||||
|
||||
Subtracting vectors works in a similar fashion:
|
||||
|
||||
$$
|
||||
\vec a - \vec b = i + 12j - k
|
||||
$$
|
||||
|
||||
Here are the formulas:
|
||||
|
||||
$$
|
||||
\vec a + \vec b = a_i+b_i \\
|
||||
\vec a - \vec b = a_i-b_i
|
||||
|
||||
$$
|
||||
|
||||
Here’s a graph visualizing the addition and subtraction of vectors: [https://www.desmos.com/calculator/gavjpwhnuo](https://www.desmos.com/calculator/gavjpwhnuo)
|
||||
|
||||
# Multiplication by Scalar
|
||||
|
||||
To multiply a vector by a scalar (regular number), just multiply all the components by that number:
|
||||
|
||||
$$
|
||||
m\vec a = ma_i
|
||||
$$
|
||||
|
||||
# Multiplication by Another Vector: Dot Product
|
||||
|
||||
There are two different ways to multiply a vector by another vector. The first way is a dot product. Here is the algebraic definition, where n is the length of the two vectors:
|
||||
|
||||
$$
|
||||
\vec a \cdot \vec b = \sum _{i = 0}^n a_ib_i
|
||||
$$
|
||||
|
||||
With two two dimensional vectors, we can also provide a geometric definition, where $||\vec a||$ is the magnitude of $\vec a$, and $\theta$ is the angle between the vectors:
|
||||
|
||||
$$
|
||||
\vec a \cdot \vec b = ||a|| \: ||b|| \: \cos \theta
|
||||
$$
|
||||
|
||||
As you can see, the dot product returns a single value, or scalar. From the geometric definition, you can see that it describes how much one vector “aligns” to the other.
|
||||
|
||||
## Proving that the Definitions are the Same
|
||||
|
||||
Let $\vec a$ have a magnitude of $m$ and an angle of $p$, let $\vec b$ have a magnitude of $n$ and an angle of $q$.
|
||||
|
||||
$$
|
||||
\vec a \cdot \vec b \\
|
||||
= m\cos p \: n \cos q + m\sin p \: n \sin q \\
|
||||
= mn(\cos p \: cos q + \sin p \: \sin q) \\
|
||||
= mn\cos(p-q)
|
||||
$$
|
||||
|
||||
Using the algebraic definition, we can get the geometric definition as shown above.
|
||||
|
||||
# Cross Product
|
||||
|
||||
Let $n$ be a unit vector perpendicular to $\vec a$ and $\vec b$, and $\theta$ be the angle between them. The cross product is:
|
||||
|
||||
$$
|
||||
\vec a \times \vec b = ||\vec a|| \: ||\vec b|| \: \sin \theta \: n
|
||||
$$
|
||||
Reference in New Issue
Block a user