Initial commit
This commit is contained in:
40
sin x = 2.md
Normal file
40
sin x = 2.md
Normal file
@@ -0,0 +1,40 @@
|
||||
#Math #Trig
|
||||
|
||||
$$
|
||||
\sin x = 2
|
||||
$$
|
||||
$$
|
||||
\frac {e^{ix} - e^{-ix}} {2i} = 2
|
||||
$$
|
||||
$$
|
||||
e^{ix} - e^{-ix} = 4i \\
|
||||
$$
|
||||
$$
|
||||
e^{ix} - (e^{ix})^{-1} = 4i
|
||||
$$
|
||||
|
||||
Let $u = e^{ix}$:
|
||||
|
||||
$$
|
||||
u - u^{-1} = 4i
|
||||
$$
|
||||
$$
|
||||
u^2 - 1 = 4iu \\ $$$$
|
||||
u^2 - 4iu - 1 = 0
|
||||
$$$$
|
||||
u^2 - 4iu - 4 = -3 $$$$
|
||||
(u - 2i)^2 = -3 \\ $$$$
|
||||
u - 2i = \pm \sqrt {-3} $$$$
|
||||
u = 2i \pm \sqrt {-3} \\ $$$$
|
||||
u = i(2 \pm \sqrt 3)
|
||||
$$
|
||||
|
||||
Substitute back into $u$, for $n \in \mathbb{Z}$:
|
||||
|
||||
$$
|
||||
e^{ix} = i(2 \pm \sqrt 3) \\ $$$$
|
||||
ix = \ln (i(2 \pm \sqrt 3)) \\ $$$$
|
||||
ix = \ln i + 2\pi n+ \ln(2 \pm \sqrt 3) \\ $$$$
|
||||
ix = \frac {i\pi} 2 + 2\pi n + \ln(2 \pm \sqrt 3) $$$$
|
||||
x = \frac \pi 2 - i\ln(2 \pm \sqrt 3) + 2\pi n
|
||||
$$
|
||||
Reference in New Issue
Block a user