#Math #Calculus Limit to solve: $$ \lim _{x\to 0} \frac {e^x-1} {x} $$ Let $t = e^x - 1$ $$ \lim _{t\to 0} \frac {t} {\ln(t+1)} $$ $$ \lim _{t\to 0} \frac {1} {\frac {1} {t} \ln(1+t)} $$ Inverse power log rule $$ \lim _{t\to 0} \frac {1} {\ln(1+t)^{\frac {1} {t}}} $$ Definition of e $$ \frac {1} {\ln e} $$ $$ 1 $$