#Math #Probability # The Poisson Distribution The Poisson Distribution describes a distribution where an event occurs for an interval of time, where there is an a mean number of times the event happens in the same interval of time. # Binomial Distribution to Poisson Distribution Binomial Distribution $$ \frac {n!} {k!(n-k)!} p^k (1-p)^{n-k} $$ Binomial Distribution with infinite trials $$ \lim _{n\to\infty} \frac {n!} {k!(n-k)!} p^k (1-p)^{n-k} $$ Let a be np, the average success rate in n intervals. This gives us the Poisson Distribution in another form. $$ \lim _{n\to\infty} \frac {n!} {k!(n-k)!} (\frac {a} {n})^k (1-\frac {a} {n})^{n-k} $$ $$ \lim _{n\to\infty} \frac {n!} {k!(n-k)!} (\frac {a^k} {n^k}) (1-\frac {a} {n})^n(1-\frac {a} {n})^{-k} $$ $$ \frac {a^k} {k!} \lim _{n\to\infty} \frac {n!} {n^a(n-k)!} (1-\frac {a} {n})^n(1-\frac {a} {n})^{-k} $$ Now we have three limits to evaluate # Evaluating the Limits ## First Limit $$ \lim _{n \to\infty} \frac {n!} {n^k(n-k)!} $$ $$ \lim _{n \to\infty} \frac {n(n-1)(n-2)...(n-k)(n-k-1)...(1)} {n^k(n-k)(n-k-1)...(1)} $$ $$ \lim _{n\to\infty} \frac {n(n-1)...(n-k+1)} {n^k} $$ $$ \lim _{n\to\infty} (\frac {n} {n})(\frac {n-1} {n})...(\frac {n-k+1} {n}) $$ As n goes to infinity, all the terms tend to 1. Therefore, the limit tends to 1. ## Second Limit $$ \lim _{n\to\infty} (1-\frac {a} {n})^n $$ Let u be -n/x (note this tends to negative infinity) $$ \lim _{n\to\infty}(1+\frac {1} {u})^{-au} $$ Use definition of e $$ e^{-a} $$ ## Third Limit $$ \lim _{n\to\infty}(1-\frac{a} {n})^{-k} $$ a/n tends to 0 $$ 1^k $$ Therefore this limit tends to 1. # Putting it together $$ \frac {e^{-a}a^{k}}{k!} $$ is the formula for the probability of an event happening k times in an interval of time, where a is the mean number of times of the event happening in the interval of time the event ran in. This is the formula for the Poisson Distribution.