#Math #Trig $$ \sin x = 2 $$ $$ \frac {e^{ix} - e^{-ix}} {2i} = 2 $$ $$ e^{ix} - e^{-ix} = 4i \\ $$ $$ e^{ix} - (e^{ix})^{-1} = 4i $$ Let $u = e^{ix}$: $$ u - u^{-1} = 4i $$ $$ u^2 - 1 = 4iu \\ $$$$ u^2 - 4iu - 1 = 0 $$$$ u^2 - 4iu - 4 = -3 $$$$ (u - 2i)^2 = -3 \\ $$$$ u - 2i = \pm \sqrt {-3} $$$$ u = 2i \pm \sqrt {-3} \\ $$$$ u = i(2 \pm \sqrt 3) $$ Substitute back into $u$, for $n \in \mathbb{Z}$: $$ e^{ix} = i(2 \pm \sqrt 3) \\ $$$$ ix = \ln (i(2 \pm \sqrt 3)) \\ $$$$ ix = \ln i + 2\pi n+ \ln(2 \pm \sqrt 3) \\ $$$$ ix = \frac {i\pi} 2 + 2\pi n + \ln(2 \pm \sqrt 3) $$$$ x = \frac \pi 2 - i\ln(2 \pm \sqrt 3) + 2\pi n $$