#Math #Trig # Euler's Formula Euler's formula states: $$ e^{i \theta} = i\sin \theta + \cos \theta $$ ## Proof $$ \frac d {d \theta} \frac {i \sin \theta + \cos \theta} {e^{i \theta}} \\ = e^{-i\theta}(i \sin \theta + \cos \theta) \\ = (e^{-i\theta})(i \sin \theta + \cos \theta)\prime + (e^{-i\theta}) \prime (i \sin \theta + \cos \theta) \\ = (e^{-i\theta})(i \cos \theta - \sin \theta) - i(e^{-i\theta})(i \sin \theta + \cos \theta) \\ = (e^{-i\theta})(i \cos \theta - \sin \theta) - (e^{-i\theta})(i \cos \theta - \sin \theta) \\ = 0 $$ Therefore $\frac {i \sin \theta + \cos \theta} {e^{i \theta}}$ is a constant. Plug in $\theta = 0$, to get $\frac {i \sin \theta + \cos \theta} {e^{i \theta}} = 1$. Multiply both sides by $e^{i\theta}$ to get $$ e^{i \theta} = i\sin \theta + \cos \theta $$ ## Euler's Identity Plug $\theta = π$ into Euler's Formula $$ e^{i \pi} = i\sin \pi + \cos \pi \\ e^{i \pi} = -1 $$ # Trig Functions Redefined Sine: $$ e^{i \theta} = i\sin \theta + \cos \theta \\ -e^{-i \theta} = -i\sin -\theta - \cos -\theta \\ -e^{-i \theta} = i\sin \theta - \cos \theta \\ e^{i\theta} - e^{-i\theta} = 2i \sin \theta \\ \sin \theta = \frac {e^{i\theta} - e^{-i\theta}} {2i} $$ Cosine: $$ e^{i \theta} = i\sin \theta + \cos \theta \\ e^{-i \theta} = i\sin -\theta + \cos -\theta \\ e^{-i \theta} = -i\sin \theta + \cos \theta \\ e^{i\theta} + e^{-i \theta} = 2\cos \theta \\ \cos \theta = \frac {e^{i\theta} + e^{-i \theta}} 2 $$