#Math #NT # Definition Euler’s totient function returns the number of integers from $1 \leq k \leq n$ for a positive integer $n$. It is notated as: $$ \phi(n) $$ # $\phi(n)$ for Prime Powers Through prime factorization, for $p^k$, the only positive integers below $p^k$ where $\gcd(p^k, n) > 1$ is where $n = mp$, for $1 \leq m \leq p^{k - 1}$. Therefore: $$ \phi(p^k) \\ = p^k - p^{k - 1} \\ = p^{k - 1}(p - 1) \\ p^k(1 - \frac 1 p) $$ # Multiplicative Property of $\phi$ If $m$ and $n$ are coprime: $$ \phi(m)\phi(n) = \phi(mn) $$ Proof: Let set $A$ be all numbers coprime to $m$ below $m$, and set $B$ be all numbers coprime to $n$ below $n$. $$ |A| = \phi(m) \\ |B| = \phi(n) $$ Let set $D$ be all possible ordered pairs using elements from $A$ and $B$, where the element of $A$ is first. If for each element $(k_1, k_2)$in set $D$ we return a value $\theta$ where: $$ \theta \equiv k_1 \mod m \\ \theta \equiv k_2 \mod n $$ CRT ensures $\theta$ is unique to $\mod ab$ and exists. Given the fact $\gcd(x + yz, z) = \gcd(x, z)$, we can say that: $$ \gcd(\theta, m) = \gcd(k_1, m) = 1 \\ \gcd(\theta, n) = \gcd(k_2, n) = 1 \\ \gcd(\theta, mn) = 1 $$ If we put all $\theta$ in set $C$, we can see that set $C$ has all the elements fitting the above conditions. Looking at the length of $C$: $$ |C| = \phi(mn) \\ |C| = |A| * |B| = \phi(m)\phi(n) \\ \phi(mn) = \phi(m)\phi(n) $$ # Value of $\phi$ for any Number Let a positive integer $n$ prime factorization be: $$ n = p_1^{k_1}p_2^{k_2}p_3^{k_3}...p_l^{k_l} $$ Now using the properties above: $$ \phi(n) \\ = \prod _{i = 1}^l \phi(p_i^{k_i}) \\ = \prod _{i = 1}^l p_i^{k_i}(1 - \frac 1 {p_i}) $$ Multiplying all $p_i^{k_i}$ gives $n$, so factor that out: $$ = n \prod _{i = 1}^l (1 - \frac 1 {p_i}) $$ (you can derive most textbook definitions from this formula easily) Final formula: $$ \phi(n) = n \prod _{i = 1}^l (1 - \frac 1 {p_i}) $$