#Math #Calculus # Definition When $$ \lim _{x \to c} f(x) = L $$ For $\epsilon > 0$ and $\delta > 0$, there is a value $\delta$ for every value of $\epsilon$ such that $$ 0 < |x - c| < \delta\\ 0 < |f(x) - L| < \epsilon\\ $$ # Proving a Limit Let’s prove: $$ \lim _{h \to 0} \frac {(x + h)^2 - x^2} h = 2x $$ Let: $$ 0 < |\frac {(x + h)^2 - x^2} h - 2x| < \epsilon \\ 0 < |\frac {(x + h)^2 - x^2} h - 2x| < \epsilon \\0 < |\frac {(x^2 + 2xh + h^2 - x^2)} h - 2x| < \epsilon \\0 < |\frac {2xh + h^2} h - 2x| < \epsilon \\ $$ Remember $\epsilon > 0$: $$ 0 < |2x + h - 2x| < \epsilon \\ 0 < |h| < \epsilon $$ We have to prove for every $\epsilon$: $$ 0 < |h - 0| < \delta \\ 0 < |h| < \delta $$ These two inequalities are the same, so they are easily satisfied just by setting: $$ \delta = \epsilon $$ # Graphical Explanation [https://www.desmos.com/calculator/tucchymbrq](https://www.desmos.com/calculator/tucchymbrq)