#Math #Algebra A matrix is an $n$ by $m$ set of values. A $4 \times 3$can be notated by: $$ \begin{bmatrix}a_1 & a_2 & a_3 \cr b_1 & b_2 & b_3 \cr c_1 & c_2 & c_3 \cr d_1 & d_2 & d_3 \end{bmatrix} $$ To get a value from matrix $a$ in row $r$ and column $c$, use: $$ a_{r, c} $$ # Addition With two matrices of the same order, add corresponding elements: $$ \begin{bmatrix} a_1 & b_1 \cr c_1 & d_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \cr c_2 & d_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \cr c_1 + c_2 & d_1 + d_2 \end{bmatrix} $$ # Subtraction With two matrices of the same order, subtract corresponding elements: $$ \begin{bmatrix} a_1 & b_1 \cr c_1 & d_1 \end{bmatrix} - \begin{bmatrix} a_2 & b_2 \cr c_2 & d_2 \end{bmatrix} = \begin{bmatrix} a_1 - a_2 & b_1 - b_2 \cr c_1 - c_2 & d_1 - d_2 \end{bmatrix} $$ # Scalar Multiplication When multiplying a matrix by a scalar, multiply each element by said scalar: $$ s\begin{bmatrix} a & b \cr c & d \end{bmatrix} = \begin{bmatrix} sa & sb \cr sc & sd \end{bmatrix} $$ # Matrix Multiplication Let $a$ be an $i$ by $j$ matrix and $b$ be a $m$ by $n$ matrix. If $j = m$, $ab$ is defined. $$ ab_{c, d} = \sum _{k = 1}^{j} a_{c, k}b_{k, d} $$