#Math #NT # Basel Problem Solution ## Base Sum $$ \frac {\pi^2} 4 \\ = \frac {\pi^2} 4 \csc^2 (\frac \pi 2) \\ = \frac {\pi^2} {4^2} (\csc^2 (\frac \pi 4) + \csc^2 (\frac \pi 4 + \pi)) $$ Do this operation $a$ times, with the above equation being the second time: $$ = \frac {\pi^2} {4^{a + 1}}\sum _{n = 1}^{2^{a}} \csc^2(\frac \pi {2^{a+1}} + \frac \pi {2^a}) \\ = \sum _{n = 1}^{2^{a}} \frac {\pi^2} {4^{a + 1}} \csc^2(\frac \pi {2^{a+1}} + \frac \pi {2^a}) \\ = \sum _{n = 1}^{2^{a}} \frac {\pi ^2}{4^{a + 1}} \csc^2(\frac \pi {2^{a+1}} + \frac \pi {2^a}) \\ = \sum _{n = 1}^{2^{a}} (\frac {2^{a + 1}} \pi \sin(\frac \pi {2^{a+1}} + \frac \pi {2^a}))^{-2} \\ $$ As $a$ approaches $\infty$: $$ = 2\sum _{n=1}^{\infty} (2n - 1)^{-2} $$ Therefore: $$ \sum _{n = 1}^{\infty} (2n - 1)^{-2} = \frac {\pi^2} {8} $$ ## Manipulating this Sum $$ \sum _{n = 1}^{\infty} (2n)^{-2} = \frac 1 4 \sum _{n = 1}^{\infty} n^{-2} \\\sum _{n = 1}^{\infty} (2n - 1)^{-2} = \frac 3 4 \sum _{n = 1}^{\infty} n^{-2} \\\frac {\pi ^2} 8 = \frac 3 4 \sum _{n = 1}^{\infty} n^{-2} \\ \frac {\pi ^2} 6 = \sum _{n = 1}^{\infty} n^{-2} \\ $$ Therefore $$ \frac {\pi ^2} 6 = \sum _{n = 1}^{\infty} n^{-2} \\ $$