#Math #Calculus Represent function using power series: $$ f(x) = \sum _{n=0}^{\infty} c_n (x-a)^n $$ Find $c_0$ $$ c_0=f(a) $$ Take derivative of function $$ \frac d {dx} f(x) = \sum _{n=0}^\infty c_{n+1} (n+1)(x-a)^n $$ Find $c_1$ $$ c_1=\frac {d} {dx} f(a) $$ Take second derivative of function $$ \frac {d^2} {d^2x} f(x) = \sum _{n=0}^\infty c_{n+2} (n+1)(n+2)(x-a)^n $$ Find $c_2$ $$ c_2=\frac {\frac {d^2} {d^2x} f(a)} {2} $$ Take third derivative of function $$ \frac {d^3} {d^3x} f(x) = \sum _{n=0}^\infty c_{n+3} (n+1)(n+2)(n+3)(x-a)^n $$ Find $c_3$ $$ c_3=\frac {\frac {d^3} {d^3x} f(a)} {6} $$ Create general formula for $n$th element of $c$ $$ c_n = \frac {\frac {d^n} {d^nx}f(a)} {n!} $$ Create general formula for function as polynomial $$ f(x)=\sum _{n=0}^\infty \frac {\frac {d^n} {d^nx}f(a)} {n!} (x-a)^n $$