#Math #Trig # Definition ## Definition in terms of $e$ We define $\cosh$ and $\sinh$ to be the even and odd parts of $e^x$ respectively: $$ \cosh x = \frac {e^x + e^{-x}} 2 \\ \sinh x = \frac {e^x - e^{-x}} 2 $$ Note this gives us: $$ \sinh x + \cosh x = e^x $$ similar to Euler's Formula for circular trig functions. ## Definition in terms of a hyperbola [https://www.desmos.com/calculator/ixmjpfmukk](https://www.desmos.com/calculator/ixmjpfmukk) Know that the geometric definition of $\cosh$ is that $B = \cosh 2b$, where $b$ is the blue area. To find $b$, we can use: $$ b = \frac {B\sqrt{B^2 - 1}} 2 -\int _1^B \sqrt {x^2 - 1} dx \\ = \frac {B\sqrt{B^2 - 1}} 2 - \frac {B\sqrt {B^2 - 1} - \ln(B + \sqrt {B^2 - 1})} 2\\ = \frac {\ln(B + \sqrt {B^2 - 1})} 2 $$ Now let $a = 2b = -\ln(B + \sqrt {B^2 - 1})$. Now we can solve for $B$ in terms of $a$ to define $\cosh$: $$ a = \ln(B + \sqrt {B^2 - 1}) \\ B = \frac {e^a + e^{-a}} 2 \\ \cosh x = \frac {e^x + e^{-x}} 2 $$ Now using the fact $\cosh$ and $\sinh$ lie on a hyperbola (can be proved algebraically) we get: $$ \sinh x = \frac {e^x - e^{-x}} 2 $$