#Math #NT # Fermet’s Little Theorem If $p$ is a prime integer: $$ a^{p - 1} \equiv 1 \mod p \\ a^p \equiv a \mod p $$ $$ a^{p - 1} \equiv 1 \mod p \\ a^p \equiv a \mod p $$ # Proof Let $p$ be a prime integer. Say a necklace has $p$ beads and $a$ possible colors per bread. Except for a necklace with only one color, each combination of necklace colors has $p$ permutations. Therefore: $$ a^p \equiv a \mod p $$