Files
public-notes/Pascal’s Triangle and Binomial Coefficients.md
2025-12-25 21:13:43 -08:00

1.2 KiB
Raw Permalink Blame History

#Math #Probability

Observing Pascals Triangle

n/k 0 1 2 3 4 5
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1

As you can see, Pascals Triangle generates:


{n \choose k}

or


\frac{n!}{k!(n-k)!}

But how does this work?

First, we can manually prove the top two rows of Pascals Triangle by plugging the values into the binomial coefficient formula.

Afterward, we can use the property of Pascals Triangle, taking Pascals Triangle as a function P:


P(n + 1, k) = P(n, k) + P(n, k-1)

By proving this property in the binomial coefficient formula, we can deduce that Pascals Triangle generates binomial coefficients

The Proof


\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!}\\=\frac{n!(n-k+1)}{k!(n-k)!(n-k+1)}+\frac{n!k}{(k-1)!(n-k+1)!k}\\=\frac{n!(n-k+1)}{k!(n-k+1)!}+\frac{n!k}{k!(n-k+1)!}\\=\frac{n!(n+k+1-k)}{k!(n-k+1)!}\\=\frac{n!(n+1)}{k!(n-k+1)!}\\=\frac{(n+1)!}{k!(n-k+1)!}

From this, we have proven that we can generate binomial coefficients using Pascals Triangle