325 B
325 B
#Math #Calculus
Limit to solve:
\lim _{x\to 0} \frac {e^x-1} {x}
Let t = e^x - 1
\lim _{t\to 0} \frac {t} {\ln(t+1)}
\lim _{t\to 0} \frac {1} {\frac {1} {t} \ln(1+t)}
Inverse power log rule
\lim _{t\to 0} \frac {1} {\ln(1+t)^{\frac {1} {t}}}
Definition of e
\frac {1} {\ln e}
1