1.1 KiB
1.1 KiB
#Math #Trig
Definition
Definition in terms of e
We define \cosh and \sinh to be the even and odd parts of e^x respectively:
\cosh x = \frac {e^x + e^{-x}} 2 \\
\sinh x = \frac {e^x - e^{-x}} 2
Note this gives us:
\sinh x + \cosh x = e^x
similar to Euler's Formula for circular trig functions.
Definition in terms of a hyperbola
https://www.desmos.com/calculator/ixmjpfmukk
Know that the geometric definition of \cosh is that B = \cosh 2b, where b is the blue area. To find b, we can use:
b = \frac {B\sqrt{B^2 - 1}} 2 -\int _1^B \sqrt {x^2 - 1} dx \\
= \frac {B\sqrt{B^2 - 1}} 2 - \frac {B\sqrt {B^2 - 1} - \ln(B + \sqrt {B^2 - 1})} 2\\
= \frac {\ln(B + \sqrt {B^2 - 1})} 2
Now let a = 2b = -\ln(B + \sqrt {B^2 - 1}). Now we can solve for B in terms of a to define \cosh:
a = \ln(B + \sqrt {B^2 - 1}) \\
B = \frac {e^a + e^{-a}} 2 \\
\cosh x = \frac {e^x + e^{-x}} 2
Now using the fact \cosh and \sinh lie on a hyperbola (can be proved algebraically) we get:
\sinh x = \frac {e^x - e^{-x}} 2