from base64 import b64decode from flask import Flask, render_template, request import io from keras.preprocessing.image import img_to_array import model import numpy as np from PIL import Image app = Flask(__name__) HOST="0.0.0.0" PORT=3000 @app.route("/") def index(): return render_template("index.html") @app.route("/shape_model") def shape_model(): encoded_img = request.args["img"] encoded_img = encoded_img.replace("data:image/png;base64,", "", 1) img = b64decode(encoded_img) img = Image.open(io.BytesIO(img)) img = img.convert("L") img = img_to_array(img) prediction = model.run_model(img) return prediction if __name__ == "__main__": app.run(HOST, port=PORT)