Files
public-notes/Fourier Series Proof.md
2025-12-25 21:13:43 -08:00

184 lines
5.0 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#Math #Calculus
# Starting the Proof Off
The Taylor Series uses $x^n$ as building blocks for a function:
[[Taylor Series Proof]]
However, we can use $\sin (nx)$ and $\cos(nx)$ as well. This will be our starting point to derive the Fourier Series:
$$
f(x) = a_0\cos (0x) + b_0\sin(0x) + a_1\cos (x) + b_1\sin(x) + a_2\cos (2x) + b_2\sin(2x)... \\
f(x) = a_0 + \sum _{n = 1}^\infty (a_n\sin(nx) + b_n\cos(nx))
$$
This will be the basic equation we will use.
# Finding $a_0$
Lets integrate the equation on both sides, and bound by $[-\pi, \pi]$:
$$
\int _{-\pi}^\pi f(x) dx = \int _{-\pi}^\pi a_0 dx + \sum _{n = 1}^\infty \int _{-\pi}^\pi a_n\cos(nx) dx + \sum _{n = 1}^\infty \int _{-\pi}^\pi b_n\sin(nx) dx
$$
The first integral evaluates to $2\pi a_0$. Since the third integral is an odd function, it evaluates to $0$. The second integral can be expressed as:
$$
a_n \int _{-\pi}^\pi \cos(nx) dx \\
= \frac {a_n} n (\sin(n\pi) - \sin(-n\pi)) \\
= 0
$$
So now we have:
$$
2\pi a_0 = \int _{-\pi}^\pi f(x) dx \\
a_0 = \frac 1 {2\pi} \int _{-\pi}^\pi f(x) dx
$$
# Finding $a_n$
Lets multiply the entire equation by $\cos(mx)$, where $m \in \mathbb{Z}^+$ ($m$ is a positive integer):
$$
f(x)\cos(mx) = a_0\cos(mx) + \sum _{n = 1}^\infty a_n\cos(nx)\cos(mx) + b_n\sin(nx)\cos(mx)
$$
Now integrate on both sides, and bound by $[-\pi, \pi]$:
$$
\int _{-\pi}^\pi f(x)\cos(mx) dx = \int _{-\pi}^\pi a_0\cos(mx) dx + \sum _{n = 1}^\infty \int _{-\pi}^\pi a_n\cos(nx)\cos(mx) dx + \sum _{n = 1}^\infty \int _{-\pi}^\pi b_n\sin(nx)\cos(mx) dx
$$
We have three integrals on the right hand side to evaluate:
## First Integral
$$
\int _{-\pi}^\pi a_0 \cos(mx) dx \\
= \frac{a_0} m \sin(m\pi)- \frac{a_0} m \sin(-m\pi)
$$
Since $m\pi$ is always a multiple of $\pi$:
$$
=0
$$
## Second Integral
$$
\int _{-\pi}^\pi a_n\cos(nx)\cos(mx) dx
$$
Using $\cos$ addition formula:
$$
= \frac {a_0} 2 \int _{-\pi}^\pi \cos(nx + mx) + \cos(nx - mx) dx \\
= \frac {a_0} 2 (\int _{-\pi}^\pi \cos(nx + mx) dx + \int _{-\pi}^\pi \cos(nx - mx) dx) \\
= [\frac {a_0} 2 (\frac {\sin(nx + mx)} {n + m} + \frac {\sin(nx - mx)} {n - m})]_{-\pi}^{\pi} \\
$$
Here you will notice that this integral doesnt work for $n = m$. Well circle back to that later. For now, this is two odd functions being added together. Since the bounds are the negatives of one another:
$$
= 0
$$
Now, circling back to the extra case, where $n = m$:
$$
a_m\int _{-\pi}^\pi \cos^2(nx)dx \\
= a_m\int _{-\pi}^\pi \frac {1 + \cos(2x)} 2 dx \\
= a_m[\frac x 2 + \frac {\sin 2x} 4 ]_{-\pi}^\pi \\
= a_m[(\frac {\pi} 2 + \frac {\sin 2\pi} 4 ) - (\frac {-\pi} 2 + \frac {\sin -2\pi} 4 )] \\
= a_m\pi
$$
So, the second term in the right hand side evaluates to $a_m\pi$.
## Third Integral
$$
\int _{-\pi}^{\pi} \sin(nx)\cos(mx) dx \\
= \frac 1 2 \int _{-\pi}^{\pi} \sin(nx + mx) dx + \frac 1 2 \int _{-\pi}^\pi \sin(nx - mx) dx \\
= [-\frac 1 2(\frac {\cos(nx + mx)} {n + m} + \frac {\cos(nx - mx)} {n - m})]_{-\pi}^\pi \\
$$
Remember that $\cos x = -cos(x + \pi)$:
$$
= 0
$$
## Putting it Together
Now we have:
$$
\int _{-\pi}^\pi f(x)\cos(mx) dx = a_m\pi \\
\frac 1 \pi \int _{-\pi}^\pi f(x)\cos(mx) dx = a_m
$$
Note in this case $m$ and $n$ both represent any positive integer, and are therefore interchangeable:
$$
a_n = \frac 1 \pi \int _{-\pi}^\pi f(x)\cos(nx) dx \\
$$
# Finding $b_n$
Multiply the equation by $\sin mx$, where $m \in \mathbb{Z}^+$,integrate, and bound between $[-\pi, \pi]$:
$$
\int _{-\pi}^\pi f(x)\sin(mx) dx = \int _{-\pi}^\pi a_0\sin(mx) dx + \sum _{n = 1}^\infty \int _{-\pi}^\pi a_n\cos(nx)\sin(mx) dx + \sum _{n = 1}^\infty \int _{-\pi}^\pi b_n\sin(nx)\sin(mx) dx
$$
The first two terms are already covered, so lets focus on the final term.
## Last Integral
$$
\int _{-\pi}^\pi b_n\sin(nx)\sin(mx) dx \\
= b_n\int _{-\pi}^\pi \cos(nx - mx) - \cos(nx + mx) dx \\
= b_n [\frac {\sin(nx - mx)} {n - m} - \frac {\sin(nx + mx)} {n + m}]_{-\pi}^\pi
$$
Again, there is a special case where $n = m$. Remember $\sin \pi = 0$, so:
$$
= 0
$$
With the special case:
$$
b_m\int _{-\pi}^\pi \sin^2(mx) dx \\
= b_m\int _{-\pi}^\pi \frac {-\cos(2mx) + 1} 2 dx \\
= b_m[\frac 1 2 (x - \frac {\sin(2mx)} {2m})]_{-\pi}^\pi \\
= b_m\pi
$$
## Putting it Together
$$
b_m\pi = \int _{-\pi}^\pi f(x)\sin(mx) dx \\
b_m = \frac 1 \pi \int _{-\pi}^\pi f(x)\sin(mx) dx \\
b_n = \frac 1 \pi \int _{-\pi}^\pi f(x)\sin(nx) dx
$$
# Fourier Series
Using the above, lets express $f(x)$ as a Fourier Series:
$$
f(x) = \frac 1 {2\pi} \int _{-\pi}^\pi f(x) dx + \sum _{n = 1}^\infty \frac {\cos (nx)} \pi \int _{-\pi}^\pi f(x)\cos(nx) dx + \sum _{n = 1}^\infty \frac {\sin (nx)} \pi \int _{-\pi}^\pi f(x)\sin(nx) dx
$$
Note that this representation only works for when the function repeats from $[0, 2\pi]$. Using a similar proof, we can get:
$$
f(x) = \frac 1 P \int _{-\frac P 2}^{\frac P 2} f(x) dx + \sum _{n = 1}^\infty \frac {2 \cos (\frac {2\pi nx} P)} P \int _{-\frac P 2}^{\frac P 2} f(x)\cos(\frac {2\pi nx} P) dx + \sum _{n = 1}^\infty \frac {2 \sin (\frac {2\pi nx} P)} P \int _{-\frac P 2}^{\frac P 2} f(x)\sin(\frac {2\pi nx} P) dx
$$