Files
public-notes/Central Limit Theorem.md
2025-12-25 21:13:43 -08:00

245 lines
5.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#Math #Probability
# The Central Limit Theorem
Let us sum $n$ instances from an i.i.d (independent and identical distribution) with defined first and second moments (mean and variance). Center the distribution on $0$ and scale it by its standard deviation. As $n$ goes to infinity, the distribution of that variable goes toward
$$
\frac 1 {\sqrt 2 \pi} e^{- \frac {x^2} 2}
$$
or the standard normal distribution
## Mathematical Definition
Let Y be the mean of a sequence of n i.i.ds
$$
Y = \frac 1 n \sum _{i=1}^{n} X_i
$$
Let $\mu=E(X_i)$, the expected value of $X$, and $\sigma = \sqrt {Var(X)}$, the standard deviation of $X$
Calculate the expected value of Y, $E(Y)$, and the variance, $Var(Y)$:
$$
E(Y) \\
= E(\frac 1 n \sum _{i=1}^{n} X_i) \\
= \frac 1 n \sum _{i=1}^{n} E(X_i) \\
= \frac 1 n \sum _{i=1}^{n} \mu \\
= \frac {n \mu} {n} \\
= \mu
$$
$$
Var(Y) \\
= Var(\frac 1 n \sum _{i=1}^n X_i) \\
= \frac 1 {n^2} \sum _{i=1}^n Var(X_i) \\
= \frac \sigma n
$$
Let $Y^*$ be centered by $E(Y)$ and scaled by it's standard deviation, $\sqrt {Var(Y)}$
$$
Y^* \\ = \frac {Y - E(Y)} {\sqrt {Var(Y)}} \\ = \frac {Y - \mu} {\sqrt {\frac {\sigma^2} {n}}} \\ = \frac {\sqrt n (Y - \mu)} \sigma \\= \frac {\sqrt n (\frac 1 n \sum _{i=0}^n X_i - \mu)} \sigma \\ = \frac {\frac 1 {\sqrt n} (\sum _{i=0}^n X_i - \mu)} \sigma
$$
The CLT states
$$
Y^* \overset d \to N(0, 1)
$$
Or $Y^*$ converges in distribution to the standard normal distribution with a mean of 0 and a standard deviation of 1
# Proof
## A Change in Variables
Let $S$ be the sum of our sequence of n i.i.ds
$$
S = \sum _{i=1}^{n} X_i
$$
Lets calculate $E(S)$ and $Var(S)$
$$
E(S) \\
=E(\sum _{i=1}^n X_i) \\
=\sum _{i=1}^n E(X_i) \\
=\sum _{i=1}^n \mu \\
= n\mu
$$
$$
Var(S) \\
=Var(\sum _{i=1}^n X_i) \\
=\sum _{i=1}^n Var(X_i) \\
=\sum _{i=1}^n \sigma^2 \\
=n\sigma^2
$$
Center $S$ by $E(S)$ and scale it by $\sqrt {Var(S)}$ for $S^*$
$$
S^* \\
= \frac {S - E(S)} {\sqrt {Var(S)}} \\
= \frac {S - n\mu} {\sqrt {n\sigma^2}} \\
= \frac {S - n\mu} {\sqrt {n}\sigma} \\
= \frac {\frac 1 {\sqrt n} (S-n\mu)} { \sigma} \\
= \frac {\frac 1 {\sqrt n} (\sum _{i=0}^n X_i - \mu)} \sigma
$$
From the above, $Y^*=S^*$. In the proof, we will use $S^*$, as it is easier to manipulate.
## MGFs
An MGF is a function where
$$
M_V(t) = E(e^{tV})
$$
where $V$ is a random variable
(reminder for me to do another notion on this)
### Properties of MGFs
Property 1:
If
$$
C=A+B
$$
Then
$$
M_C(t) \\
= E(e^{tC}) \\
= E(e^{ta + tb}) \\
= E(e^{ta}e^{tb}) \\
= E(e^{ta}) + E(e^{tb}) \\
= M_A(t) + M_B(t)
$$
Property 2:
$$
M_V^{(r)}(0) = E(V^r)
$$
The $r$ derivative of $M_V$ gives the $r$ moment of $V$
Property 3:
Let $A$ be a sequence of random variables with MGFs of $A_1$, $A_2$… $A_n$
If
$$
M_{A_n}(t) \to M_B(t)
$$
Then
$$
A \overset d \to B
$$
### MGF of a Normal Distribution
Let a random variable derived from a standard normal distribution be Z
$$
Z \sim N(0, 1)
$$
$$
M_z(t) \\
= E(e^{xt}) \\
= \int _{-\infty}^{\infty} e^{xt} \frac 1 {\sqrt {2\pi}} e^{-\frac {x^2} 2} dx \\
= \int _{-\infty}^{\infty} \frac 1 {\sqrt {2\pi}} e^{tx-\frac 1 2 x^2} dx \\
= \int _{-\infty}^{\infty} \frac 1 {\sqrt {2\pi}} e^{-\frac 1 2 (x^2 - 2tx )} dx \\
= \int _{-\infty}^{\infty} \frac 1 {\sqrt {2\pi}} e^{-\frac 1 2 (x^2 - 2tx + t ) + \frac 1 2 t^2 } dx \\
= \int _{-\infty}^{\infty} \frac 1 {\sqrt {2\pi}} e^{-\frac 1 2 (x - t)^2 + \frac 1 2 t^2 } dx \\
= e ^ {\frac 1 2 t^2} \int _{-\infty}^{\infty} \frac 1 {\sqrt {2\pi}} e^{-\frac 1 2 (x - t)^2 } dx \\
= e ^ {\frac {t^2} 2}
$$
## The Argument
To prove the CLT, we need to prove that $S^*$ converges to $N(0, 1)$ as $n \to \infty$. Our approach will be to prove that the MGF of $N(0, 1)$ converges to the distribution of $S^*$ as $n \to \infty$.
$$
S^* \\
= \frac {S - E(S)} {\sqrt {Var(S)}} \\
= \frac {S - n\mu} {\sqrt {n \sigma^2}} \\
= \frac {\sum _{i=1}^{n} X_i - n\mu} {\sqrt n \sigma} \\
= \sum _{i=1}^{n} \frac {X_i - u} {\sqrt n \sigma}
$$
Start manipulating MGF of $S^*$:
$$
M_{S^*}(t) \\
= E(e^{tS^*}) \\
= E(e^{t(\sum _{i=1}^{n} \frac {X_i - u} {\sqrt n \sigma})}) \\
= E(e^{t(\frac {(X-\mu)} {\sqrt n \sigma})})^n \\
= (M_{\frac {(X-\mu)} {\sqrt n \sigma}}(t))^n \\
=(M_{(X - \mu)} (\frac t {\sqrt n \sigma })^n
$$
Expand out Taylor series for $(M_{(x-\mu)}(\frac t {\sqrt n \sigma}))^n$ (note $O(t^3)$ means order $t^3$ and above, and tends to zero as $n$ goes to $\infty$ ):
$$
M_{(X-\mu)}(\frac t {\sqrt n \sigma}) \\
= (M_{(X-\mu)}(0)) + (\frac {M_{(X-\mu)}\prime(0)} {1!})(\frac t {\sqrt n \sigma}) + (\frac {M_{(X-\mu)}\prime\prime(0)} {2!})(\frac t {\sqrt n \sigma})^2 + (\frac {M_{(X-\mu)}\prime\prime\prime(0)} {1!})(\frac t {\sqrt n \sigma})^3 + ...\\
= 1 + (\frac {t} {\sqrt n \sigma})E(X-\mu) + (\frac {t^2} {2 n \sigma^2})E((X-\mu)^2) + (\frac {t^3} {6n ^ {\frac 3 2} \sigma ^ 3})E((X-\mu)^3) + ... \\
= 1 + (\frac t {\sqrt n \sigma})E(X-\mu) + (\frac {t^2}
{2n \sigma^2})E((X-\mu)^2) + O(t^3) \\
\approx 1 + (\frac t {\sqrt n \sigma})E(X-\mu) + (\frac {t^2}
{2n \sigma^2})E((X-\mu)^2)
$$
Remember $E(X-\mu) = 0$ and $E((X-\mu)^2) = \sigma^2$
$$
= 1 + (\frac t {\sqrt n \sigma})(0) + (\frac {t^2} {2n \sigma^2})(\sigma ^ 2) \\
= 1 + \frac {t^2} {2n}
$$
Solve for $M_{S^*} (t)$:
$$
M_{S^*}(t) = (1 + \frac {t^2} {2n})^n
$$
Solve $M_{S^*} (t)$ for $\lim _{n \to \infty}$:
$$
\lim _{n \to \infty} M_{S^*}(t) \\
= \lim _{n \to \infty} (1 + \frac {t^2} {2n})^n \\
= \lim _{n \to \infty} (1 + \frac 1 {(\frac {2n} {t^2})})^{\frac {t^2} 2 (\frac {2n} {t^2})} \\
= e^{\frac {t^2} 2}
$$
Since $\lim _{n \to \infty} M_{S^*} (t) \to M_Z(t)$, $\lim _{n \to \infty}S^* \overset d \to N(0, 1)$. Therefore:
$$
Y^* \overset d \to N(0, 1)
$$
proving the Central Limit Theorem
## Summary of the Argument
$$
Y^* = S^* \\
\lim _{n \to \infty} M_{S^*}(t) \to M_Z (t) \\
\lim _{n \to \infty} S^* \to N(0, 1) \\
\lim _{n \to \infty} Y^* \to N(0, 1) \\
$$