41 lines
634 B
Markdown
41 lines
634 B
Markdown
#Math #Trig
|
|
|
|
$$
|
|
\sin x = 2
|
|
$$
|
|
$$
|
|
\frac {e^{ix} - e^{-ix}} {2i} = 2
|
|
$$
|
|
$$
|
|
e^{ix} - e^{-ix} = 4i \\
|
|
$$
|
|
$$
|
|
e^{ix} - (e^{ix})^{-1} = 4i
|
|
$$
|
|
|
|
Let $u = e^{ix}$:
|
|
|
|
$$
|
|
u - u^{-1} = 4i
|
|
$$
|
|
$$
|
|
u^2 - 1 = 4iu \\ $$$$
|
|
u^2 - 4iu - 1 = 0
|
|
$$$$
|
|
u^2 - 4iu - 4 = -3 $$$$
|
|
(u - 2i)^2 = -3 \\ $$$$
|
|
u - 2i = \pm \sqrt {-3} $$$$
|
|
u = 2i \pm \sqrt {-3} \\ $$$$
|
|
u = i(2 \pm \sqrt 3)
|
|
$$
|
|
|
|
Substitute back into $u$, for $n \in \mathbb{Z}$:
|
|
|
|
$$
|
|
e^{ix} = i(2 \pm \sqrt 3) \\ $$$$
|
|
ix = \ln (i(2 \pm \sqrt 3)) \\ $$$$
|
|
ix = \ln i + 2\pi n+ \ln(2 \pm \sqrt 3) \\ $$$$
|
|
ix = \frac {i\pi} 2 + 2\pi n + \ln(2 \pm \sqrt 3) $$$$
|
|
x = \frac \pi 2 - i\ln(2 \pm \sqrt 3) + 2\pi n
|
|
$$
|