Files
public-notes/Another Way to Define e.md
2025-12-25 21:13:43 -08:00

33 lines
325 B
Markdown

#Math #Calculus
Limit to solve:
$$
\lim _{x\to 0} \frac {e^x-1} {x}
$$
Let $t = e^x - 1$
$$
\lim _{t\to 0} \frac {t} {\ln(t+1)}
$$
$$
\lim _{t\to 0} \frac {1} {\frac {1} {t} \ln(1+t)}
$$
Inverse power log rule
$$
\lim _{t\to 0} \frac {1} {\ln(1+t)^{\frac {1} {t}}}
$$
Definition of e
$$
\frac {1} {\ln e}
$$
$$
1
$$