Files
public-notes/Fermat’s Little Theorem.md
2025-12-25 21:13:43 -08:00

418 B
Raw Blame History

#Math #NT

Fermets Little Theorem

If p is a prime integer:


a^{p - 1} \equiv 1 \mod p \\
a^p \equiv a \mod p

a^{p - 1} \equiv 1 \mod p \\
a^p \equiv a \mod p

Proof

Let p be a prime integer. Say a necklace has p beads and a possible colors per bread. Except for a necklace with only one color, each combination of necklace colors has p permutations. Therefore:


a^p \equiv a \mod p