Files
public-notes/Taylor Series Proof.md
2025-12-25 21:13:43 -08:00

844 B

#Math #Calculus

Represent function using power series:


f(x) = \sum _{n=0}^{\infty} c_n (x-a)^n

Find c_0


c_0=f(a)

Take derivative of function


\frac d {dx} f(x) = \sum _{n=0}^\infty c_{n+1} (n+1)(x-a)^n

Find c_1


c_1=\frac {d} {dx} f(a)

Take second derivative of function


\frac {d^2} {d^2x} f(x) = \sum _{n=0}^\infty c_{n+2} (n+1)(n+2)(x-a)^n

Find c_2


c_2=\frac {\frac {d^2} {d^2x} f(a)} {2}

Take third derivative of function


\frac {d^3} {d^3x} f(x) = \sum _{n=0}^\infty c_{n+3} (n+1)(n+2)(n+3)(x-a)^n

Find c_3


c_3=\frac {\frac {d^3} {d^3x} f(a)} {6}

Create general formula for $n$th element of c


c_n = \frac {\frac {d^n} {d^nx}f(a)} {n!}

Create general formula for function as polynomial


f(x)=\sum _{n=0}^\infty \frac {\frac {d^n} {d^nx}f(a)} {n!} (x-a)^n