Files
public-notes/Taylor Series Proof.md
2025-12-25 21:13:43 -08:00

61 lines
844 B
Markdown

#Math #Calculus
Represent function using power series:
$$
f(x) = \sum _{n=0}^{\infty} c_n (x-a)^n
$$
Find $c_0$
$$
c_0=f(a)
$$
Take derivative of function
$$
\frac d {dx} f(x) = \sum _{n=0}^\infty c_{n+1} (n+1)(x-a)^n
$$
Find $c_1$
$$
c_1=\frac {d} {dx} f(a)
$$
Take second derivative of function
$$
\frac {d^2} {d^2x} f(x) = \sum _{n=0}^\infty c_{n+2} (n+1)(n+2)(x-a)^n
$$
Find $c_2$
$$
c_2=\frac {\frac {d^2} {d^2x} f(a)} {2}
$$
Take third derivative of function
$$
\frac {d^3} {d^3x} f(x) = \sum _{n=0}^\infty c_{n+3} (n+1)(n+2)(n+3)(x-a)^n
$$
Find $c_3$
$$
c_3=\frac {\frac {d^3} {d^3x} f(a)} {6}
$$
Create general formula for $n$th element of $c$
$$
c_n = \frac {\frac {d^n} {d^nx}f(a)} {n!}
$$
Create general formula for function as polynomial
$$
f(x)=\sum _{n=0}^\infty \frac {\frac {d^n} {d^nx}f(a)} {n!} (x-a)^n
$$