Files
public-notes/Poisson Distribution.md
2025-12-25 21:13:43 -08:00

1.9 KiB

#Math #Probability

The Poisson Distribution

The Poisson Distribution describes a distribution where an event occurs for an interval of time, where there is an a mean number of times the event happens in the same interval of time.

Binomial Distribution to Poisson Distribution

Binomial Distribution


\frac {n!} {k!(n-k)!} p^k (1-p)^{n-k}

Binomial Distribution with infinite trials


\lim _{n\to\infty} \frac {n!} {k!(n-k)!} p^k (1-p)^{n-k}

Let a be np, the average success rate in n intervals. This gives us the Poisson Distribution in another form.


\lim _{n\to\infty} \frac {n!} {k!(n-k)!} (\frac {a} {n})^k (1-\frac {a} {n})^{n-k}

\lim _{n\to\infty} \frac {n!} {k!(n-k)!} (\frac {a^k} {n^k}) (1-\frac {a} {n})^n(1-\frac {a} {n})^{-k}

\frac {a^k} {k!} \lim _{n\to\infty} \frac {n!} {n^a(n-k)!} (1-\frac {a} {n})^n(1-\frac {a} {n})^{-k}

Now we have three limits to evaluate

Evaluating the Limits

First Limit


\lim _{n \to\infty} \frac {n!} {n^k(n-k)!}

\lim _{n \to\infty} \frac {n(n-1)(n-2)...(n-k)(n-k-1)...(1)} {n^k(n-k)(n-k-1)...(1)}

\lim _{n\to\infty} \frac {n(n-1)...(n-k+1)} {n^k}

\lim _{n\to\infty} (\frac {n} {n})(\frac {n-1} {n})...(\frac {n-k+1} {n})

As n goes to infinity, all the terms tend to 1. Therefore, the limit tends to 1.

Second Limit


\lim _{n\to\infty} (1-\frac {a} {n})^n

Let u be -n/x (note this tends to negative infinity)


\lim _{n\to\infty}(1+\frac {1} {u})^{-au}

Use definition of e


e^{-a}

Third Limit


\lim _{n\to\infty}(1-\frac{a} {n})^{-k}

a/n tends to 0


1^k

Therefore this limit tends to 1.

Putting it together


\frac {e^{-a}a^{k}}{k!}

is the formula for the probability of an event happening k times in an interval of time, where a is the mean number of times of the event happening in the interval of time the event ran in. This is the formula for the Poisson Distribution.