Files
public-notes/Poisson Distribution.md
2025-12-25 21:13:43 -08:00

97 lines
1.9 KiB
Markdown

#Math #Probability
# The Poisson Distribution
The Poisson Distribution describes a distribution where an event occurs for an interval of time, where there is an a mean number of times the event happens in the same interval of time.
# Binomial Distribution to Poisson Distribution
Binomial Distribution
$$
\frac {n!} {k!(n-k)!} p^k (1-p)^{n-k}
$$
Binomial Distribution with infinite trials
$$
\lim _{n\to\infty} \frac {n!} {k!(n-k)!} p^k (1-p)^{n-k}
$$
Let a be np, the average success rate in n intervals. This gives us the Poisson Distribution in another form.
$$
\lim _{n\to\infty} \frac {n!} {k!(n-k)!} (\frac {a} {n})^k (1-\frac {a} {n})^{n-k}
$$
$$
\lim _{n\to\infty} \frac {n!} {k!(n-k)!} (\frac {a^k} {n^k}) (1-\frac {a} {n})^n(1-\frac {a} {n})^{-k}
$$
$$
\frac {a^k} {k!} \lim _{n\to\infty} \frac {n!} {n^a(n-k)!} (1-\frac {a} {n})^n(1-\frac {a} {n})^{-k}
$$
Now we have three limits to evaluate
# Evaluating the Limits
## First Limit
$$
\lim _{n \to\infty} \frac {n!} {n^k(n-k)!}
$$
$$
\lim _{n \to\infty} \frac {n(n-1)(n-2)...(n-k)(n-k-1)...(1)} {n^k(n-k)(n-k-1)...(1)}
$$
$$
\lim _{n\to\infty} \frac {n(n-1)...(n-k+1)} {n^k}
$$
$$
\lim _{n\to\infty} (\frac {n} {n})(\frac {n-1} {n})...(\frac {n-k+1} {n})
$$
As n goes to infinity, all the terms tend to 1. Therefore, the limit tends to 1.
## Second Limit
$$
\lim _{n\to\infty} (1-\frac {a} {n})^n
$$
Let u be -n/x (note this tends to negative infinity)
$$
\lim _{n\to\infty}(1+\frac {1} {u})^{-au}
$$
Use definition of e
$$
e^{-a}
$$
## Third Limit
$$
\lim _{n\to\infty}(1-\frac{a} {n})^{-k}
$$
a/n tends to 0
$$
1^k
$$
Therefore this limit tends to 1.
# Putting it together
$$
\frac {e^{-a}a^{k}}{k!}
$$
is the formula for the probability of an event happening k times in an interval of time, where a is the mean number of times of the event happening in the interval of time the event ran in. This is the formula for the Poisson Distribution.